强化学习(RL)文献的最新进展使机器人主义者能够在模拟环境中自动训练复杂的政策。但是,由于这些方法的样本复杂性差,使用现实世界数据解决强化学习问题仍然是一个具有挑战性的问题。本文介绍了一种新颖的成本整形方法,旨在减少学习稳定控制器所需的样品数量。该方法添加了一个涉及控制Lyapunov功能(CLF)的术语 - 基于模型的控制文献的“能量样”功能 - 到典型的成本配方。理论结果表明,新的成本会导致使用较小的折现因子时稳定控制器,这是众所周知的,以降低样品复杂性。此外,通过确保即使是高度亚最佳的策略也可以稳定系统,添加CLF术语“鲁棒化”搜索稳定控制器。我们通过两个硬件示例演示了我们的方法,在其中我们学习了一个cartpole的稳定控制器和仅使用几秒钟和几分钟的微调数据的A1稳定控制器。
translated by 谷歌翻译
通过行业对非线性退化的地平线控制(RHC)策略的广泛采用导致了30多年的激烈研究工作,以为这些方法提供稳定性保证。但是,当前的理论保证要求可以将每个(通常是非covex)计划问题解决为(近似)全球最优性,这是基于衍生的基于衍生的局部优化方法的不现实要求,通常用于RHC的实际实现。本文迈出了第一步,当将内部计划问题解决到一阶固定点时,但不一定是全球最佳选择,可以理解非线性RHC的稳定性保证。特别注意反馈可线化的系统,并提供了正面和负面结果的混合物。我们确定,在某些强大条件下,一阶解决方案可实现RHC稳定可线化的系统。至关重要的是,这种保证要求将其应用于计划问题的状态成本在某种意义上与系统的全球几何形状兼容,并且一个简单的反示例证明了这种情况的必要性。这些结果突出了需要重新考虑基于优化的控制背景下全局几何形状的作用。
translated by 谷歌翻译
Autonomous vehicles are being deployed with a spectrum of capability, extending from driver assistance features for the highway in personal vehicles (SAE Level 2+) to fully autonomous fleet ride sharing services operating in complex city environments (SAE Level 4+). This spectrum of autonomy often operates in different physical environments with different degrees of assumed driver in-the-loop oversight and hence have very different system and subsystem requirements. At the heart of SAE Level 2 to 5 systems is localization and mapping, which ranges from road determination for feature geofencing or high-level routing, through lane determination for advanced driver assistance, to where-in-lane positioning for full vehicle control. We assess localization and mapping requirements for different levels of autonomy and supported features. This work provides a framework for system decomposition, including the level of redundancy needed to achieve the target level of safety. We examine several representative autonomous and assistance features and make recommendations on positioning requirements as well map georeferencing and information integrity.
translated by 谷歌翻译
We present Azimuth, an open-source and easy-to-use tool to perform error analysis for text classification. Compared to other stages of the ML development cycle, such as model training and hyper-parameter tuning, the process and tooling for the error analysis stage are less mature. However, this stage is critical for the development of reliable and trustworthy AI systems. To make error analysis more systematic, we propose an approach comprising dataset analysis and model quality assessment, which Azimuth facilitates. We aim to help AI practitioners discover and address areas where the model does not generalize by leveraging and integrating a range of ML techniques, such as saliency maps, similarity, uncertainty, and behavioral analyses, all in one tool. Our code and documentation are available at github.com/servicenow/azimuth.
translated by 谷歌翻译
Science tests competing theories or models by evaluating the similarity of their predictions against observational experience. Thus, how we measure similarity fundamentally determines what we learn. In machine learning and scientific modeling, similarity metrics are used as objective functions. A classic example being mean squared error, which is the optimal measure of similarity when errors are normally distributed and independent and identically distributed (iid). In many cases, however, the error distribution is neither normal nor iid, so it is left to the scientist to determine an appropriate objective. Here, we review how information theory can guide that selection, then demonstrate the approach with a simple hydrologic model.
translated by 谷歌翻译
As Artificial and Robotic Systems are increasingly deployed and relied upon for real-world applications, it is important that they exhibit the ability to continually learn and adapt in dynamically-changing environments, becoming Lifelong Learning Machines. Continual/lifelong learning (LL) involves minimizing catastrophic forgetting of old tasks while maximizing a model's capability to learn new tasks. This paper addresses the challenging lifelong reinforcement learning (L2RL) setting. Pushing the state-of-the-art forward in L2RL and making L2RL useful for practical applications requires more than developing individual L2RL algorithms; it requires making progress at the systems-level, especially research into the non-trivial problem of how to integrate multiple L2RL algorithms into a common framework. In this paper, we introduce the Lifelong Reinforcement Learning Components Framework (L2RLCF), which standardizes L2RL systems and assimilates different continual learning components (each addressing different aspects of the lifelong learning problem) into a unified system. As an instantiation of L2RLCF, we develop a standard API allowing easy integration of novel lifelong learning components. We describe a case study that demonstrates how multiple independently-developed LL components can be integrated into a single realized system. We also introduce an evaluation environment in order to measure the effect of combining various system components. Our evaluation environment employs different LL scenarios (sequences of tasks) consisting of Starcraft-2 minigames and allows for the fair, comprehensive, and quantitative comparison of different combinations of components within a challenging common evaluation environment.
translated by 谷歌翻译
While machine learning models have achieved unprecedented success in real-world applications, they might make biased/unfair decisions for specific demographic groups and hence result in discriminative outcomes. Although research efforts have been devoted to measuring and mitigating bias, they mainly study bias from the result-oriented perspective while neglecting the bias encoded in the decision-making procedure. This results in their inability to capture procedure-oriented bias, which therefore limits the ability to have a fully debiasing method. Fortunately, with the rapid development of explainable machine learning, explanations for predictions are now available to gain insights into the procedure. In this work, we bridge the gap between fairness and explainability by presenting a novel perspective of procedure-oriented fairness based on explanations. We identify the procedure-based bias by measuring the gap of explanation quality between different groups with Ratio-based and Value-based Explanation Fairness. The new metrics further motivate us to design an optimization objective to mitigate the procedure-based bias where we observe that it will also mitigate bias from the prediction. Based on our designed optimization objective, we propose a Comprehensive Fairness Algorithm (CFA), which simultaneously fulfills multiple objectives - improving traditional fairness, satisfying explanation fairness, and maintaining the utility performance. Extensive experiments on real-world datasets demonstrate the effectiveness of our proposed CFA and highlight the importance of considering fairness from the explainability perspective. Our code is publicly available at https://github.com/YuyingZhao/FairExplanations-CFA .
translated by 谷歌翻译
Recent research in clustering face embeddings has found that unsupervised, shallow, heuristic-based methods -- including $k$-means and hierarchical agglomerative clustering -- underperform supervised, deep, inductive methods. While the reported improvements are indeed impressive, experiments are mostly limited to face datasets, where the clustered embeddings are highly discriminative or well-separated by class (Recall@1 above 90% and often nearing ceiling), and the experimental methodology seemingly favors the deep methods. We conduct a large-scale empirical study of 17 clustering methods across three datasets and obtain several robust findings. Notably, deep methods are surprisingly fragile for embeddings with more uncertainty, where they match or even perform worse than shallow, heuristic-based methods. When embeddings are highly discriminative, deep methods do outperform the baselines, consistent with past results, but the margin between methods is much smaller than previously reported. We believe our benchmarks broaden the scope of supervised clustering methods beyond the face domain and can serve as a foundation on which these methods could be improved. To enable reproducibility, we include all necessary details in the appendices, and plan to release the code.
translated by 谷歌翻译
The SNMMI Artificial Intelligence (SNMMI-AI) Summit, organized by the SNMMI AI Task Force, took place in Bethesda, MD on March 21-22, 2022. It brought together various community members and stakeholders from academia, healthcare, industry, patient representatives, and government (NIH, FDA), and considered various key themes to envision and facilitate a bright future for routine, trustworthy use of AI in nuclear medicine. In what follows, essential issues, challenges, controversies and findings emphasized in the meeting are summarized.
translated by 谷歌翻译
Reinforcement learning (RL) operating on attack graphs leveraging cyber terrain principles are used to develop reward and state associated with determination of surveillance detection routes (SDR). This work extends previous efforts on developing RL methods for path analysis within enterprise networks. This work focuses on building SDR where the routes focus on exploring the network services while trying to evade risk. RL is utilized to support the development of these routes by building a reward mechanism that would help in realization of these paths. The RL algorithm is modified to have a novel warm-up phase which decides in the initial exploration which areas of the network are safe to explore based on the rewards and penalty scale factor.
translated by 谷歌翻译